
DIFFUSION-THERMAL INSTABILITY OF A LAMINAR FLAME
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The problem of the diffusion-thermal instability of a laminar flame with a nonzero thickness of the chemical-
reaction zone is solved. Two scenarios of the behavior of the process of burning in the presence of small per-
turbations with constant and variable velocities of motion of the flame are considered. The latter, in
particular, leads to a Markstein formula relating the velocity of motion of the burning front to the curvature
of this front and virtually to the absolute instability of burning. In the case of a constant velocity of the flame
and the Lewis number Le > 1, only the aperiodic loss of stability is implemented, whereas in the case of
Le < 1 only the periodic loss is implemented.

In the most general formulation of the problem of investigating diffusion-thermal instability, the behavior of
burning is considered with respect to arbitrary perturbations resulting in the spatial distortion of a plane laminar flame
that moves relative to the initial combustible mixture with velocity vn, which is called the normal velocity of propa-
gation. The instability of the laminar flame has been investigated in a great number of works ([1–5] and more]. The
first mathematical investigation of the so-called one-dimensional stability was carried out by Rosen [1], whose conclu-
sions were disproved by Barenblatt, Zel’dovich, and Kanel [2, 3]. In [6], it is assumed that the flame is unstable when
distorted and when the effective Lewis numbers are Le < 1 (Le = D ⁄ κ); the instability is caused by the enthalpy excess
in the burning front. But if Le > 1, the burning is stable. The mathematical calculation presented in [4] (in this work,
the zone of chemical reaction was considered to be infinitely thin) led to the opposite conclusion: the burning is stable
when Le < 1 and unstable when Le > 1. More recent [5, 7, and others] investigations, similar to those conducted in [4],
have shown that the diffusion-thermal instability of the laminar flame can be observed for Lewis numbers both more
and less than unity. It turns out that the region of stable burning is determined not only by the value of the Lewis
number but also by the parameter ψ = E(Tb − T0) ⁄ (2RTb

2) >> 1, which was present even in [4] and characterizes the
chemical-reaction rate. For rather large values of this parameter the region of stable burning is localized in a small
neighborhood near the straight line Le = 1 on the plane (Le, ψ), which is the unique stability condition within the limit
ψ → ∞ [7, 8].

Plane Flame Front. In the simple case of the gross reaction of first order, the rate of the chemical reaction
W is described by the formula

W = Nk0 exp 

− 

E
RT




 , (1)

which is a particular form of the Arrhenius law. An analytical investigation of the problems of nonstationary burning
with application of Eq. (1) is very laborious. Therefore, instead of Eq. (1) we take the more simplified form

W = Nk0 exp 

− 

E
RTb




 η (T − T∗ ) (2)

with the ignition temperature T∗ , whose form is determined from the requirement on agreement between the plane-
flame velocity and the similar expression from the Zel’dovich–Frank-Kamenetskii theory at high activation energies.
The reaction rate (2) retains the most important properties of the Arrhenius law, i.e., its strong temperature dependence
and nonlinearity. Formula (2) was successfully used [9] in analytical calculations of the velocity of motion of the
plane stationary flame front at arbitrary Lewis numbers.
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With the use of Eq. (2), the plane stationary flame front in a gaseous mixture with the chemical gross reac-
tion of first order occurring in this mixture is described by the system of equations

vn 
dT

dx′
 = κ 

d
2
T

dx′
2
 + 

Q

cp

 Nk0 exp 

− 

E

RTb




 η (T − T∗ ) ,   vn 

dN

dx′
 = D 

d
2
N

dx′
2
 − Nk0 exp 


− 

E

RTb




 η (T − T∗ ) . (3)

With the introduction of the dimensionless parameters and the velocity scale v∗

u = 
T − T0

Tb − T0
 = 

cp

QN0
 (T − T0) ,   b = 

N0 − N

N0
 ,   x = 

x′v∗
κ

 ,   w = 
vn

v∗
 ,   Tb = T0 + 

Q

cp
 N0

system (3) takes the form

w
0
 
du

dx
 = 

d
2
u

dx
2 + W ,   w

0
 
db

dx
 = Le 

d
2
b

dx
2 + W ,   W = a (1 − b) η (u − u∗ ) ,   a = 

k0κ

v∗
2  exp 




− 

E

RTb




 , (4)

in which w0 is the dimensionless velocity of the plane stationary flame. In what follows, the superscript 0 will mean
that the symbol belongs to this type of flame.

According to (4), the problem of propagation of the flame corresponds to the following boundary conditions:

x → − ∞ :   u
0
 = b

0
 = 0 ;   x → + ∞ :   du

0 ⁄ dx = db
0 ⁄ dx = 0 . (5)

Locating the site of rupture [Eq. (2)] at the point x = 0 and assigning indices 1 and 2 to the temperature u0

and the burn-out b0 for x < 0 and x > 0, respectively, we give the distributions of u0(x) and b0(x):

x < 0 :   u1
0
 = u∗  exp (w0

x) = 
k

k + w
0 exp (w0

x) ,   b1
0
 = 



1 − 

w
0
k

a




 exp 





w
0
x

Le




 = 

k
2
 Le

a
 exp 





w
0
x

Le




 ,

x > 0 :   u2
0
 = 1 − 

w
0

k + w
0
 exp (− kx) ,   b2

0
 = 1 − 

w
0
k

a
 exp (− kx) ,   k = 

√(w0)2 + 4a Le  − w
0

2 Le
 ,

a = 
k0κ

v∗
2  exp 




− 

E

RTb




 ,   (w0)2 = 








1 − u∗

u∗








2

 
a

Le + (1 − u∗ ) ⁄ u∗
 ,

(6)

where k is the positive root of the equation Le k2 + w0k − a = 0.
Solutions (6) satisfy boundary conditions (5) and the conditions of continuity of u0(x) and b0(x) and of their

first derivatives at the point x = 0.
In the limit a → ∞; this corresponds to an infinitely high activation energy. Then u∗  → 1, and assuming that

1 − u∗
u∗

 C 1 − u∗  = 
Tb

Tb − T0
 √ 2T0

Tb
 
RTb
E

 ,

we obtain the expression for the flame velocity vn given in [8]. It is convenient to take vn as the velocity scale v∗ .
Then

w
0
 = 1 ,   a = Le n 





n − 1

n
 

E

RTb





2

 ,   n = 
Tb
T0

 .
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With consideration of the aforesaid, hereafter we will assume that w0 = 1.
With the taken form of the ignition temperature u∗  in the limit E ⁄ RTb → ∞ the rate of the chemical reaction

in the form of Eq. (2) tends to the Dirac δ function and approximates arbitrarily exactly the similar expression by the
Arrhenius law.

Mathematical Formulation of the Problem for a Slightly Distorted Flame. Now we superimpose a small
perturbation on the plane stationary flame; this perturbation causes the deformation (identical in magnitude) of its front
along the transverse coordinates y, z. To perform an analysis linear in perturbation degrees, it is sufficient to consider
the system of equations

∂u

∂t
 + w 

∂u

∂x
 = ∆u + W ,   

∂b

∂t
 + w 

∂b

∂x
 = Le ∆b + W ,   ∆ B 

∂2

∂x
2 + 

∂2

∂y
2 + 

∂2

∂z
2 , (7)

in which the convective transfers in the directions y and z are neglected as small quantities of higher orders. The di-
mensionless time t is measured in the units κ ⁄ un

2. We will seek the solutions of Eq. (7) in the form

u = u
0
 (x) + ξ (y, z, t) F (x) ,   b = b

0
 (x) + ξ (y, z, t) G (x) ,   w = w

0
 + w′ = w

0
 − q∆′ξ ,   w′ = − q∆′ξ ,

∆′ = 
∂2

∂y
2 + 

∂2

∂z
2 ,

where the deformation ξ(y, z, t) of the burning front has the exponential time dependence with the perturbation-growth
increment Ω (or the perturbation-growth index) and the sine dependence on the spatial coordinates with the wave num-
bers λ1 and λ2 in the directions y and z: ∂ξ ⁄ ∂t = Ωξ and ∆′ξ = − λ2ξ; λ2 = λ1

2 + λ2
2.

The physical meaning of the parameter q, which, in the stationary regime of burning, is the Markstein con-
stant, will be defined below.

The substitution of u, b, and w into Eq. (7), further linearization, and application of Eq. (2) in intermediate
calculations after simple transformations give the equations for F and G:

d
2
F

dx
2  − 

dF

dx
 − (Ω + λ2) F + 

∂W

∂u
0 F = − 

∂W

∂b
0 G + qλ2

 
du

0

dx
 ,

Le 
d

2
G

dx
2  − 

dG

dx
 − (Ω + λ2

 Le) G + 
∂W

∂b
0 G = − 

∂W

∂u
0 F + qλ2

 
db

0

dx
 .

(8)

Having calculated the derivatives entering into Eq. (8)

∂W

∂u
0 = a (1 − b

0) δ (u0
 − u∗ ) ,   

∂W

∂b
0
 = − aη (u0

 − u∗ ) ,

next we have

d
2
F

dx
2

 − 
dF

dx
 − (Ω + λ2) F + a (1 − b

0) δ (u0
 − u∗ ) F = aη (u0

 − u∗ ) G + qλ2
 
du

0

dx
 ,

Le 
d

2
G

dx
2

 − 
dG

dx
 − (Ω + λ2

 Le) G − aη (u0
 − u∗ ) G = − a (1 − b

0) δ (u0
 − u∗ ) F + qλ2

 
db

0

dx
 .

(9)

Boundary conditions (5) also hold for the perturbed flame, only in Eq. (5) we must replace u0 → u and
b0 → b. The conditions obtained in this way for system (9) yield the vanishing of F and G for x → −∞ and of their
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first derivatives for x → + ∞. At the point x = ξ and within the framework of the linear analysis used here, the quan-
tities u, b, du ⁄ dx, and db ⁄ dx must be continuous. The condition of continuity of u and b gives the equalities

F1 = F2 ,   G1 = G2 . (10)

The condition of continuity of their derivatives (more precisely, of the fluxes of energy and a substance) leads to the
requirements

d
2
u1

0

dx
2

 + 
dF1

dx
 = 

d
2
u2

0

dx
2

 + 
dF2

dx
 ,   

d
2
b1

0

dx
2

 + 
dG1

dx
 = 

d
2
b2

0

dx
2

 + 
dG2

dx
 . (11)

The second derivatives of u0(x) and b0(x) have a discontinuity at the point x = 0

d
2
u1

0

dx
2  − 

d
2
u2

0

dx
2  = k ,   

d
2
b1

0

dx
2  − 

d
2
b2

0

dx
2  = 

k

Le
 ,

and then conditions (11) in final form appear as

dF1

dx
 − 

dF2
dx

 + k = 0 ,   
dG1
dx

 − 
dG2
dx

 + 
k

Le
 = 0 . (12)

Furthermore, the first derivatives of F(x) and G(x) undergo, in addition to Eq. (12), a discontinuity at the
point x = 0, which immediately follows from Eq. (9). Integrating Eq. (9) over the vanishingly small region near x = 0
and using the known properties of the δ function [10], we find

dF2

dx
 − 

dF1
dx

 + (k + 1) F2 = 0 ,   
dG2

dx
 − 

dG1

dx
 + 

k + 1

Le
 F2 = 0 . (13)

Taking Eq. (10) into account, it is easy to see that Eqs. (12) and (13) simultaneously lead to the equalities

F2 = − 
k

k + 1
 = F1 . (14)

This means that one of equalities (14) can be taken as a boundary condition supplementary to Eqs. (10) and (12).
Thus, when x = 0, we have five boundary conditions for determining the unknown four constants of integration (after
satisfaction of the conditions for x → % ∞) and the eigenvalues q and Ω.

Characteristic Equation. We now proceed to solution of Eqs. (9). For the region x < 0 from Eq. (9) with ac-
count for Eq. (6) we obtain the system of equations

d
2
F1

dx
2  − 

dF1

dx
 − (Ω + λ2) F1 = qλ2

 
k

k + 1
 exp (x) ,   Le 

d
2
G1

dx
2  − 

dG1

dx
 − (Ω + λ2

 Le) G1 = qλ2
 
k

2

a
 exp 





x

Le




 .

The solutions of this system vanishing for x → − ∞ are as follows:

F1 = f1 exp (αx) − q 
λ2

Ω + λ2
 

k

k + 1
 exp (x) ,   α = 

1 + √1 + 4 (Ω + λ2)

2
 ,

G1 = g1 exp (βx) − q 
λ2

Ω + Le λ2 
k

2

a
 exp 



x

Le




 ,   β = 

1 + √1 + 4 Le (Ω + Le λ2)

2 Le
 . (15)

Similarly, in the region x > 0 we have, respectively,
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d
2
F2

dx
2  − 

dF2

dx
 − (Ω + λ2) F2 = aG2 + qλ2

 
k

k + 1
 exp (− kx) ,

Le 
d

2
G2

dx
2  − 

dG2

dx
 − (Ω + Le λ2) G2 − aG2 = qλ2

 
k

2

a
 exp (− kx) ,

G2 = g2 exp (− χx) − q 
λ2

Ω + Le λ2
 
k

2

a
 exp (− kx) ,   χ = 

− 1 + √ 1 + 4 Le (a + Ω + λ2 Le)

2 Le
 ,

F2 = f2 exp (− γx) + A1g2 exp (− χx) − q 
λ2

Ω + Le λ2 A2 exp (− kx) ,

γ = 
− 1 + √1 + 4 (Ω + λ2)

2
 ,   A1 = 

a

χ2
 + χ − (Ω + λ2)

 ,   A2 = 
k

k + 1
 
k (k + 1) − (Ω + Le λ2)

k (k + 1) − (Ω + λ2)
 .

(16)

In Eqs. (15) and (16), f1, f2, g1, and g2 are the constants of integration.
The substitution of Eqs. (15) and (16) into boundary conditions (10) results in the algebraic equations

f1 − q 
λ2

Ω + λ2 
k

k + 1
 = f2 + g2A1 − q 

λ2

Ω + Le λ2 A2 ,   g1 = g2 . (17)

The use of Eqs. (15) and (16) in Eq. (12) yields the expressions

αf1 − q 
λ2

Ω + λ2 
k

k + 1
 + γ f2 + χg1A1 − q 

λ2

Ω + Le λ2 kA2 + k = 0 ,

βg1 − q 
λ2

Ω + Le λ2 
k

2

a Le
 + χg2 − q 

λ2

Ω + Le λ2 
k

3

a
 + 

k

Le
 = (β + χ) g1 − 




q 

λ2

Ω + Le λ2 − 1



 

k

Le
 = 0 ,

(18)

here, in writing the second expression, we applied the second equality from Eq. (17) and the above-given equality (see
Eq. (6)) Le k2 + k − a = 0.

From the second expression in Eq. (18) we find

g1 = 
k

Le (χ + β)
 



q 

λ2

Ω + Le λ2
 − 1




 . (19)

The quantities f1 and f2 are determined from conditions (14):

f1 = 
k

k + 1
 



q 

λ2

Ω + λ2 − 1



 ,   f2 = q 

λ2

Ω + Le λ2 − A1g1 − 
k

k + 1
 . (20)

The first expressions in Eqs. (17), (18) and (19), (20) after simple calculation give the equation

k

k + 1
 



qγ 

λ2

Ω + λ2 − α − γ



 + ϕ1 




q 

λ2

Ω + Le λ2 − 1



 − ϕ2q 

λ2

Ω + Le λ2 + k = 0 ,
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ϕ1 = 
k

Le
 
χ − γ

χ + β
 

k (Le k + 1)

χ2
 + χ − (Ω + λ2)

 ,   ϕ2 = 
k (k − γ)

k + 1
 
k (k + 1) − (Ω + Le λ2)

k (k + 1) − (Ω + λ2)
 .

(21)

From the condition of satisfaction of the required equality in Eq. (21) it is necessary to determine the explicit form of
q and Ω. The parameter q determines the change in the velocity of propagation of the flame in the presence of a per-
turbation in the initially plane front. To find a new value of the flame velocity, we must solve Eq. (21) for different
values of q and Ω, assuming q to be the same root of Eq. (21) as Ω. Here, as the solution of problem (1) we obtain
a set of pairs q and Ω. Using a specific example, we explain the manner in which the procedure of finding these
eigenvalues is carried out. Let, for simplicity, Le = 1. Then

ϕ1 = 
χ − γ

χ + β
 

k
2
 (k + 1)

χ2
 + χ − (Ω + λ2)

 = k 
χ − γ

χ + β
 ,   ϕ2 = 

k (k − γ)
k + 1

  ,

and instead of Eq. (21) we have

k 



q 

λ2

Ω + λ2 − 1



 




χ − γ

χ + β
 − 

k − 2γ

k + 1




 = 0 . (22)

The equality in Eq. (22) is satisfied when

q = 
Ω

λ2
 + 1 (23)

and for such values of Ω which are the roots of the equation

χ − γ

χ + β
 − 

k − 2γ

k + 1
 = 0 .

Solving this equation, we find that Ω1 = −λ2 and Ω2 = −λ2 − 1 ⁄ 4. The substitution of these quantities into Eq. (23)
gives q(Ω1) = 0 and q(Ω2) = −1 ⁄ (4λ2).

With account for formula (23) the determination of the flame velocity w = w0 − q∆′ξ now takes the form

w = w
0
 − 




Ω

λ2
 + 1




 ∆′ξ .

We replace here Ω and λ2 by their expressions in terms of the derivatives of the front deformation in conformity with

the equalities Ω = 
1
ξ

 
∂ξ
∂t

 and λ2 = − 
1
ξ

 ∆′ξ:

w = w
0
 + 
∂ξ
∂t

 − ∆′ξ . (24)

In this case, the first term w0 = 1 is the velocity of the plane unperturbed flame, the second term is the kinematic ad-
ditive, whose appearance is attributed to the fact that the problem is solved relative to the coordinate system tied to
the plane unperturbed flame, and the third term determines the change in the flame velocity as a function of the cur-
vature of its front (Markstein’s correction [11, 12]).

The problem of the diffusion-thermal stability of the laminar flame can be formulated in two different ways.
In the first of them, the velocity of propagation vn of the flame can be considered to be constant in the presence of
perturbations. Then for q = 0 the stability is determined by the absence of the increment Ω with a positive real part in
the roots of (21). This approach has been applied in [4, 5, 7]. But the second approach used above is based on the
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assumption of variability of the flame velocity (q ≠ 0) in the perturbed flame. Which of these approaches describes
adequately the actual flame remains to be identified. However, it is clear that in the first case a limitation on the range
of possible values of Ω is imposed.

Stability of Burning at a Constant Flame Velocity. Analysis of the stability of the flame at vn = const
(q = 0) has been studied in sufficient detail [8]. Therefore, this problem is considered here only superficially. Assuming
the Lewis number to be arbitrary, we consider Eq. (21) in the limit k → ∞. The equation

q = 




Ω

λ2 + Le



 

1 ⁄ Le − β + γ
1 ⁄ Le − β + γ + λ2

 (Le − 1) ⁄ α

obtained in this way for q = 0 falls into the following two equations: Ω ⁄ λ2 + Le = 0 and 1 ⁄ Le − β + γ = 0, whence we
find that Ω1 = −Le λ2 and Ω2 = λ. The second, positive, root indicates the absolute instability of the flame in the case
of infinitely high activation energy. This result has been obtained earlier in [7], but it also follows from the dispersion
relation of [4].

Now we find the expression for the frequency of the unstable solution accurate to small quantities of the
order of 1 ⁄ k inclusive. When q = 0, Eq. (21) gives

k − 2γ

k + 1
 − 
χ − γ

χ + β
 

k (Le k + 1)

Le [χ2
 + χ − (Ω + λ2)]

 = 0 . (25)

It should be noted that this characteristic equation for k >> 1 does not become one of the similar expressions obtained
in [4, 7].

We expand Eq. (25) into a Taylor series:

χ C k 



1 + 

Ω + Le λ2

2 Le k
2




 ,   χ2

 + χ C k (k + 1) 



1 + 

Ω + Le λ2

Le k (k + 1)




 ,   

k (Le k + 1)

χ2
 + χ − (Ω + λ2)

 C 
Le k + 1

k + 1
 



1 + 

Le − 1

Le
 
Ω

k
2



 ,   

χ − γ

χ + β
 C 




1 − 

γ + β

χ
 + 
β (γ + β)

χ2



 .

(26)

After simple calculations with the use of Eq. (26), Eq. (25) is reduced to the form

1
Le

 − β + γ + 
1
k

 



(β + γ) 


β − 

1
Le



 + 

Le − 1
Le

 Ω

 = 0 . (27)

Fig. 1. Change in the region of aperiodic stability loss (Le = 1) with increase in
the dimensionless activation energy k: 5 (1), 10 (2), 15 (3), 20 (4), and 30 (5).
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Assuming in Eq. (27) that Ω C λ + ε ⁄ k, where ε is the parameter to be determined, and using the expansions

γ C λ + 
ε

k(2λ + 1)
 and β − 

1
Le

 C λ + 
ε

k(2Le λ + 1)
, for ε we obtain the expression

ε = − 
(2λ + 1)2 (2 Le λ + 1)

2 (Le − 1)
 .

In [5], it has been revealed that for Le > 1 there are regions with vibrational and nonvibrational losses of sta-
bility. The boundary of the region for the first case is found from the condition Ω = 0 and for the second one from
the condition Ω = iω, i = √−1 . The parameter ω has the meaning of frequency. But if Le < 1, only the vibrational sta-
bility loss is observed. However, the investigation of the stability carried out on the basis of formula (25) has shown
a somewhat different picture. Thus, for Le > 1 only the nonvibrational (aperiodic) stability loss is observed. The results
of the numerical analysis of Eq. (25) are presented in Fig. 1. Here, the regions of unstable burning occupying the
space above curves 1, 2, etc., for different values of the dimensionless activation energy k have the shape of peninsu-
las with a common shore, i.e., the ordinate Le. But if Le < 1, the stability loss is only of a vibrational nature; the re-
gion of unstable burning has the shape of an island whose dimensions grow rapidly with increase in k. The results of
the numerical calculation are given in Fig. 2.

Stability of Burning at a Variable Flame Velocity. It would seem that the indices Ω1 = −λ2 and Ω2 =
−λ2 − 1 ⁄ 4 of the perturbation growth with negatively determined signs, found above for the case Le = 1, can indicate
the absolute stability of the flame with a variable vn. Nonetheless, it turns out that apart from Ω1 and Ω2 we have one
more regime of burning with the increment Ω3 which is overlooked if we immediately set Le = 1 in Eq. (21). Indeed,
let in Eq. (21)

q = 
Ω

λ2
 + Le . (28)

In the equality

γ 
Ω + Le λ2

Ω + λ2
 − α − γ − (k − γ) 

k (k + 1) − (Ω + Le λ2)

k (k + 1) − (Ω + λ2)
 + k + 1 = 0 (29)

resulting from Eq. (21), we take Ω B Ω3 = −λ2 + k(k + 1). Evaluating the indeterminacy of the form 0/0 which arises in
this case in the fraction (k − γ) ⁄ [k(k + 1) − (Ω3 + λ2)], we reduce Eq. (29) to the form

Fig. 2. Change in the region of periodic stability loss (Le < 1) with increase in
the dimensionless activation energy k: a) 5 (1), 7 (2); b) 10 (1), 15 (2). For
k = 5, the instability island is formed by curve 1 and by a part of the Le axis,
while for k = 7, 10, and 15, it is additionally formed by a part of the λ2 axis.
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λ2
 

k (Le − 1)
(k + 1) (2k + 1)

 = 0 . (30)

The equality to zero of the left-hand side of Eq. (30) required here is possible for Le = 1, if the exotic case λ = 0 cor-
responding to one-dimensional perturbations and the unreal case k = ∞ are neglected.

When the increment Ω3 is present, the indeterminacy of the form 0/0 that is easily evaluated also arises in
the solutions of F1 and F2. The unwieldy but simple calculation gives (Le = 1)

x < 0 :   F1 = G1 = − 
k

k + 1
 exp x ,   x > 0 :   F2 = G2 = − 

k
k + 1

 exp (− kx) .

Thus, for the wave numbers λ satisfying the inequality

λ < √k (k + 1)  C k = 
n − 1

√ n
 

E
RTb

the flame is unstable.
The author expresses his gratitude to I. G. Dik (Ehrlangen–Nu

..
rnberg University, Germany), A. M. Grishin,

and A. Yu. Krainov (Tomsk State University) for some valuable comments, recommendations, and fruitful discussions
of the results obtained.

NOTATION

D and κ, coefficients of diffusion and thermal diffusivity; Tb and T0, burning temperature and initial tempera-
ture of the mixture; E, activation energy of the chemical reaction; R, universal gas constant; N and N0, running and
initial concentrations of the reacting substance; k0, pre-exponential factor in the Arrhenius law; η, Heaviside unit func-
tion; Q, thermal effect of the chemical reaction; cp, heat capacity of the gas at constant pressure; x′, coordinate of the
direction of motion of the plane flame front. Subscript: b, burning.
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